Probabilistic Discriminative Kernel Classifiers for Multi-class Problems

نویسنده

  • Volker Roth
چکیده

Logistic regression is presumably the most popular representative of probabilistic discriminative classifiers. In this paper, a kernel variant of logistic regression is introduced as an iteratively re-weighted least-squares algorithm in kernel-induced feature spaces. This formulation allows us to apply highly efficient approximation methods that are capable of dealing with large-scale problems. For multi-class problems, a pairwise coupling procedure is proposed. Pairwise coupling for “kernelized” logistic regression effectively overcomes conceptual and numerical problems of standard multi-class kernel classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Discriminative Kernel From Probabilistic Models

Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel...

متن کامل

دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان

Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of  discriminant classifiers training or  their error. In this ...

متن کامل

Discriminative Clustering by Regularized Information Maximization

Is there a principled way to learn a probabilistic discriminative classifier from an unlabeled data set? We present a framework that simultaneously clusters the data and trains a discriminative classifier. We call it Regularized Information Maximization (RIM). RIM optimizes an intuitive information-theoretic objective function which balances class separation, class balance and classifier comple...

متن کامل

Discriminative Learning via Semidefinite Probabilistic Models

Discriminative linear models are a popular tool in machine learning. These can be generally divided into two types: linear classifiers, such as support vector machines (SVMs), which are well studied and provide stateof-the-art results, and probabilistic models such as logistic regression. One shortcoming of SVMs is that their output (known as the ”margin”) is not calibrated, so that it is diffi...

متن کامل

Probabilistic Kernel Combination for Hierarchical Object Categorization

Recognition of general visual categories requires a diverse set of feature types, but not all are equally relevant to individual categories; efficient recognition arises by learning the potentially sparse features for each class and understanding the relationship between features common to related classes. This paper describes hierarchical discriminative probabilistic techniques for learning vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001